L-Splines als schwache Lösungen von verallgemeinerten Randwertproblemen

HEINZ-WALTER KÖSTERS

Rechenzentrum der Ruhr-Universität Bochum, Universitätsstrasse 150-NA, D-4630 Bochum, Bundesrepublik Deutschland

AND

WALTER SCHEMPP

Lehrstuhl für Mathematik I der Universität Siegen, Hölderlinstrasse 3, D-5900 Siegen 21, Bundesrepublik Deutschland

Communicated by Arthur Sard

Received July 30, 1976

By means of the energy method, L-splines of Types I and II are characterized as weak solutions of generalized boundary value problems. This characterization provides a computational procedure for L-splines. A collection of numerical examples illustrates the method.

EINLEITUNG

In dieser Note wird auf der Grundlage der Theorie unbeschränkter linearer Operatoren mit Hilfe der Energiemethode (Mikhlin [16]) eine Charakterisierung der L-Splines 2*n*-ten Grades ($n \ge 1$) vom Typ I bzw. II (Schultz-Varga [19]) als schwache Lösungen von verallgemeinerten Randwertproblemen der Form

 $L_t^*L_t u = k$

hergeleitet. Dabei ist L_i die Restriktion des linearen Differentialoperators $L = \sum_{0 \leq j \leq n} a_j D^j$ mit dem Definitionsbereich Dom $(L) = W_2^n(I)$, $I = []0, 1[] \subset \mathbb{R}$, und den Koeffizientenfunktionen $a_j \in \mathscr{C}_{\mathbb{R}}^n(\bar{I}), 0 \leq j \leq n$; $a_n(x) \neq 0, x \in \bar{I}$, auf den Kern der mit Hilfe der distributionentheoretischen Ableitungen der Dirac-Maße ϵ_0 , ϵ_1 konstruierten stetigen linearen Abbildung

$$F_t = \mathop{\mathbf{X}}_{0 \leqslant j \leqslant t-1} \left((-1)^j \, \hat{c}^j \boldsymbol{\epsilon}_0 \times (-1)^j \, \hat{c}^j \boldsymbol{\epsilon}_1 \right)$$

von $W_2^n(I)$ in den Raum \mathbb{C}^{2t} . Für Typ I ist t = n, für Typ II dagegen t = lmit $l = [\frac{1}{2}(n-1)] + 1$ zu setzen; L_i^* bezeichnet den zu L_i adjungierten Operator. Es zeigt sich, daß $L_t^*L_t$ ein positiv-definiter, selbstadjungierter Operator mit dem Definitionsbereich $W_2^{2n}(I) \cap \hat{W}_2^n(I)$ bzw. dem Raum aller Funktionen u aus $W_2^{2n}(I) \cap \hat{W}_2^l(I)$ mit $D^jLu(0) = D^jLu(1) = 0$, $0 \leq j \leq n-l-1$ ist. Ferner erweist sich k als eine stetige Linearform auf dem Energieraum $(\hat{W}_2^n(I); (L(\cdot) | L(\cdot))_0)$ von $L_n^*L_n$ bzw. $(W_2^n(I) \cap \hat{W}_2^l(I); (L(\cdot) | L(\cdot))_0)$ von $L_i^*L_i$ in der Form einer gewichteten Linearkombination von Dirac-Maßen an den inneren Interpolationsknoten. Hierbei bezeichnet $(\cdot | \cdot)_0$ das kanonische Skalarprodukt des komplexen Hilbertraumes $L_2(I)$. Der reproduzierende Kern (Meschkowski [15]) des Energieraumes von $L_i^*L_i$ läßt sich im Falle der Existenz als dessen Green-Funktion berechnen. Durch Anwendung der Linearform k auf den reproduzierenden Kern ergibt sich dann eine geschlossene Darstellung für die interpolierenden L-Splines und darüberhinaus eine Möglichkeit zu ihrer numerischen

Dem Direktor des Rechenzentrums der Ruhr-Universität Bochum, Herrn Prof. Dr. H. Ehlich, danken wir für die Möglichkeit, die beigefügten Beispiele auf der Rechenanlage TR 440 zu realisieren.

1. KONSTRUKTION UND LÖSUNG DES VERALLGEMEINERTEN RANDWERTPROBLEMS ZUM ANSATZ VON SARD

Die komplexen Hilberträume X, Y und Z sowie die stetigen, linearen Abbildungen U, F seien in dem Diagramm

$$\begin{array}{c} X \xrightarrow{F} Z \\ U \bigvee_{Y \longleftarrow} Z \\ Y \longleftarrow \operatorname{Ker}(F) \end{array}$$
(D1)

so gegeben, daß durch

$$(x, y) \rightsquigarrow ((x \mid y))_X = (Ux \mid Uy)_Y + (Fx \mid Fy)_Z$$
(1.1)

ein zum ursprünglichen äquivalentes Skalarprodukt auf X erklärt wird. Das ist (Sard [18]) der Fall, sofern die verallgemeinerte Friedrichs'sche Ungleichung

$$\|x\|_{X}^{2} \leqslant B_{1}^{2}(\|Ux\|_{Y}^{2} + \|Fx\|_{Z}^{2}) \qquad (B_{1} > 0)$$
(1.2)

für alle $x \in X$ erfüllt ist. Ferner sei Ker(F) dicht und stetig in Y eingebettet.

Dann ist der unbeschränkte Operator

$$U_1 = U, \qquad \operatorname{Dom}(U_1) = \operatorname{Ker}(F) \tag{1.3}$$

abgeschlossen in Y.

Bezeichnet U_1^* den zu U_1 adjungierten Operator in Y, so gilt für den positiven, selbstadjungierten Operator

$$A = U_1^* U_1, \quad \text{Dom}(A) = \text{Dom}(U_1^* U_1) \subset \text{Ker}(F)$$
(1.4)

der

SATZ 1 (Delvos-Schempp [6]). Es ist A der eindeutig bestimmte positivdefinite, selbstadjungierte Operator in Y mit

$$\operatorname{Dom}(A) \subset \operatorname{Ker}(F)$$

und

$$(Ax \mid y)_Y = (Ux \mid Uy)_Y$$
 $(y \in \text{Ker}(F), x \in \text{Dom}(A)).$

Der Energieraum von A ist durch

$$H_A = (\operatorname{Ker}(F); (U(\cdot) \mid U(\cdot))_Y)$$
(1.5)

gegeben.

Satz 1 wird sich im folgenden als wesentliches Hilfsmittel zur operatortheoretischen Erfassung von Spline-Problemen erweisen. Eine Anwendung der Energiemethode (Mikhlin [16]) auf A liefert (vgl. [13]) den

SATZ 2. Zu jedem stetigen, linearen Funktional $k \in \mathscr{L}(H_A, \mathbb{C})$ gibt es genau ein Element $s_k \in H_A$, welches das verallgemeinerte Randwertproblem

$$Ax = k$$
 $(x \in H_A)$

im schwachen Sinne löst, also der Beziehung

$$(Ax \mid s_k)_Y = (Ux \mid Us_k) = \langle x, k \rangle$$

für alle $x \in H_A$ genügt, und das k zugeordnete Energiefunktional

$$H_A \ni x \rightsquigarrow (Ux \mid Ux)_Y - 2 \operatorname{Re}\langle x, k \rangle \in \mathbb{R}$$

minimiert. Das Element s_k ist der Repräsentant des Funktionals k.

2. CHARAKTERISIERUNG UND DARSTELLUNG VON L-SPLINES

In diesem Abschnitt wollen wir L-Splines des Typs I und II (Schultz-Varga [19]) als schwache Lösungen von verallgemeinerten Randwertproblemen charakterisieren.

Dazu wählen wir für Y den (komplexen) Hilbertraum $L_2(I)$ der quadrat-

208

integrierbaren Funktionen über dem offenen Intervall $I = [0, 1[\subset \mathbb{R}]$ versehen mit dem Skalarprodukt

$$(u, v) \rightsquigarrow (u \mid v)_0 = \int_I u(x) \overline{v(x)} dx$$

und für X den Sobolev-Raum $W_2^n(I)$ mit dem Skalarprodukt

$$(u, v) \rightsquigarrow (u \mid v)_n = \sum_{0 \leqslant j \leqslant n} (D^j u \mid D^j v)_0.$$

Unter $\mathring{W}_{2}^{n}(I)$ verstehen wir den Untervektorraum aller Funktionen $u \in W_{2}^{n}(I)$, die den Randbedingungen

$$D^{j}u(0) = D^{j}u(1) = 0$$
 $(0 \le j \le n-1)$

genügen.

Als Abbildung U betrachten wir den Differentialoperator

$$L = \sum_{0 \leq i \leq n} a_j D^j \qquad (a_j \in \mathscr{C}_{\mathbb{R}}^n(\bar{I}), 0 \leq j \leq n; a_n(x) \neq 0 (x \in \bar{I})),$$

$$\mathrm{Dom}(L) = W_2^n(I).$$
(2.1)

Dabei bezeichne $\mathscr{C}_{\mathbb{K}}^{n}(\overline{I})$ den Vektorraum aller Funktionen, die Restriktionen auf \overline{I} von *n*-mal stetig differenzierbaren, \mathbb{K} -wertigen ($\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$) Funktionen auf einem offenen Intervall $J \subset \mathbb{R}$ mit $J \supset \overline{I}$ sind.

An die Stelle von F tritt für L-Splines vom Typ I bzw. II die mit Hilfe der Dirac-Maße ϵ_0 und ϵ_1 sowie deren distributionentheoretischen Ableitungen definierte stetige, lineare Abbildung

$$F_t: W_2^n(I) \to \mathbb{C}^{2t}, \qquad F_t = \underset{0 \leqslant i \leqslant t-1}{\mathsf{X}} ((-1)^j \,\partial^j \epsilon_0 \times (-1)^j \,\partial^j \epsilon_1) \qquad (2.2)$$

mit t = n (Typ I) bzw. t = l (Typ II), wobei wir

$$l = \left[\frac{1}{2}(n-1)\right] + 1 \tag{2.3}$$

setzen.

Die Anwendung von Satz 2 erfordert die Gültigkeit der Ungleichung

$$(u \mid u)_n \leq B_{1,t}^2((Lu \mid Lu)_0 + \sum_{0 \leq j \leq t-1} (|D^j u(0)|^2 + |D^j u(1)|^2))$$
(2.4)

mit einer positiven Konstanten $B_{1,t}$ für t = n, l und alle Funktionen $u \in W_2^n(I)$. Sie ist nach Meier [14] garantiert, sofern n der Linearformen

$$l_j = (-1)^j \partial^j \epsilon_0$$
, $l_{t+j} = (-1)^{t-1-j} \partial^{t-1-j} \epsilon_1$ $(0 \leq j \leq t-1)$

linear unabhängig auf Ker(L) sind, was im Fall t = n stets und bei t = l insbesondere für $L = D^n$ wegen

$$\det\left(\left\langle \frac{x^{i}}{i!}, l_{j}\right\rangle\right)_{0 \leq i, j \leq n-1} = (-1)^{s(s+1)/2} \prod_{0 \leq j \leq s} \frac{j!}{(r+s+j)!} \neq 0$$

mit r = 1 und s = l - 1 für gerades *n* bzw. r = 2 und s = l - 2 für ungerades *n* zutrifft. Daß für t = l die Ungleichung (2.4) nicht immer gesichert ist, zeigt etwa das Beispiel

$$L = D^2 + 4\pi^2 D^0, \qquad u(x) = \sin(2\pi x).$$

Für die weiteren Erörterungen im Fall t = l fordern wir deshalb, daß (2.4) gültig ist.

Wegen der Stetigkeit fon L (vgl. [9]) ergeben sich dann mit

$$\operatorname{Ker}(F_n) = \mathring{W}_2^n(I), \qquad \operatorname{Ker}(F_l) = \mathscr{W}_2^n(I) \cap \mathring{W}_2^l(I)$$

die (D1) entsprechenden Diagramme

$$\begin{array}{cccc} W_{2}^{n}(I) \xrightarrow{F_{n}} \mathbb{C}^{2n} & W_{2}^{n}(I) \xrightarrow{F_{l}} \mathbb{C}^{2l} \\ \downarrow & & \\ \downarrow & & \\ L_{2}(I) & \longleftarrow \hat{W}_{2}^{n}(I) & L_{2}(I) & \longleftarrow W_{2}^{n}(I) \cap \hat{W}_{2}^{l}(I) \end{array}$$
(D3)

Mit Hilfe der Greenschen Formel

$$(Lu \mid v)_0 - (u \mid L^*v)_0 = \sum_{0 \le i \le n-1} D^{n-i-1}u(x) \sum_{0 \le j \le i} (-1)^j D^j(a_{n-i+j}(x) \overline{v(x)})|_0^1$$

und den Koeffizienten

$$b_j = \sum_{\substack{j \leq k \leq n}} (-1)^k \binom{k}{j} D^{k-j} a_k \qquad (0 \leq j \leq n)$$
(2.5)

des zu

$$L_t = L$$
, $Dom(L_t) = Ker(F_t)$ $(t = n, l)$

adjungierten Operators

$$L_t^* = \sum_{0 \leqslant i \leqslant n} b_j D^i,$$

$$\text{Dom}(L_n^*) = W_2^n(I),$$

$$\text{Dom}(L_t^*) = W_2^n(I) \cap \mathring{W}_2^{n-l}(I)$$
(2.7)

erhalten wir für den Operator A aus Satz 1

$$\begin{aligned} A_{l}u &= \sum_{0 \leq j \leq n} b_{j} D^{j} \left(\sum_{0 \leq k \leq n} a_{k} D^{k} u \right) \quad (t = n, l), \\ \text{Dom}(A_{n}) &= W_{2}^{2n}(l) \cap \mathring{W}_{2}^{n}(l) \end{aligned}$$

sowie

$$Dom(A_{l}) = \{ u \in W_{2}^{2n}(l) \cap \tilde{W}_{2}^{l}(l) \} D^{j}Lu(0) = D^{j}Lu(1) = 0, 0 \leq j \leq n-l-1 \},$$
(2.8)

$$H_{A_n}(I) = (\mathring{W}_2^n(I); (L(.)|\ L(.))_0), \tag{2.9}$$

$$H_{A_l}(I) = (W_2^n(I) \cap \mathring{W}_2^l(I); (L(.)|L(.))_0).$$
(2.10)

Der folgende Satz gibt Auskunft über den reproduzierenden Kern des Energieraums von A_t (vgl. auch Ciarlet-Varga [2], sowie [10], [6–8], und [13]):

SATZ 3. Der reproduzierende Kern des Energieraums $H_{A_t}(I)$ ist die Green-Funktion K_t des Operators A_t für t = n, l.

Beweis. Nach Satz 1 ist A_t positive-definit. Also existiert die Green-Funktion K_t von A_t . Für alle $u \in Dom(A_t)$ erhalten wir mit Hilfe der Greenschen Formel aufgrund der Eigenschaften von K_t (und unter Berücksichtigung der Leibniz-Regel im Falle t = l):

$$\begin{split} u(y) &= \int_{I} K_{t}(y, x) A_{t}u(x) dx = \int_{I} L_{x}K_{t}(y, x) Lu(x) dx \\ &- \sum_{0 \leq i \leq n-1} D_{x}^{n-i-1}K_{t}(y, x) \cdot \sum_{0 \leq r \leq i} (-1)^{r} D^{r}(a_{n-r+i}(x) Lu(x))|_{0}^{1} \\ &= \int_{I} L_{x}K_{t}(y, x) Lu(x) dx = \int_{I} Lu(x) \overline{L_{x}K_{t}(x, y)} dx \\ &= (Lu \mid L_{x}K_{t}(., y))_{0} . \end{split}$$

Mit der Dichtheit von $\text{Dom}(A_t)$ in $H_{A_t}(I)$ und der Stetigkeit des Skalarprodukts folgt dann die reproduzierende Eigenschaft von K_t für alle $u \in H_{A_t}(I)$.

Zur Anwendung der Sätze 2 und 3 auf *L*-Splines vom Typ I bzw. II erinnern wir zunächst an deren Definition (Schultz-Varga [19]).

Sei

$$\omega: 0 = x_0 < \cdots < x_N = 1$$

eine Zerlegung von \overline{I} . Mit $I_i = [x_{i-1}, x_i]$ $(1 \le i \le N)$ bezeichnen wir die durch ω bestimmten offenen Teilintervalle von I.

Ist $f \in W_2^n(I)$, so heißt $S_l \in W_2^{2n-1}(I)$ ein interpolierender *L*-Spline vom Typ I (t = n) bzw. II (zum Inzidenzvektor $(l, 1, ..., 1, l) \in \mathbb{R}^{N+1}$; t = l), falls die folgenden Bedingungen erfüllt sind:

$$\operatorname{rest}_{I_i} S_t \in \mathscr{C}^{2n}_{\mathbb{C}}(\bar{I}_i) \qquad (1 \leqslant i \leqslant N; t = n, l);$$

$$(2.11)$$

$$\operatorname{rest}_{I_i} L^* LS_t = 0 \qquad (1 \leqslant i \leqslant N; t = n, l); \tag{2.12}$$

$$S_t(x_i) = f(x_i) \qquad (0 \leq i \leq N; t = n, l);$$

$$(2.13)$$

$$D^{j}S_{t}(x_{r}) = D^{j}f(x_{r})$$
 $(r = 0, N; 0 \leq j \leq t - 1; t = n, l);$ (2.14)

$$\sum_{0 \leq s \leq j} (-1)^s D^s(a_{n-j+s}(x_r) \ \overline{LS_l(x_r)}) = 0 \qquad (r = 0, N; 0 \leq j \leq n-l-1).$$
(2.15)

Wir erhalten nun (vgl. auch [13] für den Typ I) eine Charakterisierung und Darstellung solcher *L*-splines durch den nachstehenden

SATZ 4. Der die Funktion $f \in \text{Ker}(F_t)$ interpolierende L-Spline S_t vom Typ I bzw. II ist die eindeutig bestimmte schwache Lösung des verallgemeinerten Randwertproblems

$$A_{t}v = \sum_{1 \leq i \leq N-1} c_{i,t}(f) \epsilon_{x_{i}} \qquad (v \in H_{A_{t}}(I); t = n, l)$$
(2.16)

mit den Koeffizienten

$$c_{i,t}(f) = (-1)^n \left(a_n(x_i) \right)^2 \left(\overline{D^{2n-1}S_t(x_i+)} - \overline{D^{2n-1}S_t(x_i-)} \right)$$
(2.17)

für $1 \leq i \leq N-1$ und $t = n, l. S_t$ besitzt die Darstellung

$$S_t: x \rightsquigarrow \sum_{1 \leq i \leq N-1} \overline{c_{i,t}}(f) \ K_t(x, x_i) \qquad (x \in \overline{I}; t = n, l).$$
(2.18)

Beweis. Wir führen den Beweis für t = l. Für t = n verläuft er völlig analog.

Wegen (2.14) gehört S_l zu $H_{A_l}(I)$. Für alle $v \in H_{A_l}(I)$ folgt mit (2.12) und der Greenschen Formel

$$(Lv \mid LS_l)_0 = \sum_{1 \leqslant i \leqslant N} \int_{I_i} Lv(x) \overline{LS_l(x)} dx$$

= $\sum_{1 \leqslant i \leqslant N} \sum_{0 \leqslant i \leqslant n-1} D^{n-j-1}v(x) \cdot \sum_{0 \leqslant r \leqslant i} (-1)^r D^r(a_{n-j+r}(x) \overline{LS_l(x)}) \Big|_{x_{i-1}}^{x_i}.$

Aus $D^{j}v(0) = D^{j}v(1) = 0$ für $0 \le j \le l-1$ und der Stetigkeit der Ableitungen von S_{l} bis zur Ordnung 2n - 2 ergibt sich unter Berücksichtigung der Leibniz-Regel

$$\sum_{1\leqslant i\leqslant N}\sum_{n-l\leqslant j\leqslant n-2} D^{n-j-1}v(x)\cdot \sum_{0\leqslant r\leqslant j} (-1)^r D^r(a_{n-j+r}(x) \overline{LS_l(x)})\Big|_{x_{i-1}}^{x_i} = 0.$$

Ebenso liefert (2.15)

$$\sum_{1 \leq i \leq N} \sum_{0 \leq j \leq n-l-1} D^{n-j-1} v(x) \cdot \sum_{0 \leq r \leq j} (-1)^r D^r(a_{n-j+r}(x) \overline{LS_l(x)}) \Big|_{x_{i-1}}^{x_i} = 0.$$

Wegen v(0) = v(1) = 0 und der Stetigkeit von D^jS_i für $0 \le j \le 2n - 2$ folgt schließlich mit der Leibniz-Regel

$$\begin{split} (Lv \mid LS_l)_0 &= (-1)^{n-1} \sum_{1 \leqslant i \leqslant N} a_n(x) \, v(x) \, D^{n-1} \, \overline{LS_l(x)} \Big|_{x_{i-1}}^{x_i} \\ &= -\sum_{1 \leqslant i \leqslant N} v(x)(-1)^n \, (a_n(x))^2 \, \overline{D^{2n-1}S_l(x)} \Big|_{x_{i-1}}^{x_i} \\ &= -\sum_{1 \leqslant i \leqslant N} (-1)^n \, ((a_n(x_i))^2 \, \overline{D^{2n-1}S_l(x_{i--})} \, v(x_i) - (a_n(x_{i-1}))^2 \\ &\times \overline{D^{2n-1}S_l(x_{i-1}+)} \, v(x_{i-1})) \\ &= \sum_{1 \leqslant i \leqslant N-1} (-1)^n \, (a_n(x_i))^2 \, \overline{(D^{2n-1}S_l(x_i+)} - \overline{D^{2n-1}S_l(x_i-)}) \, v(x_i) \\ &= \left\langle v, \sum_{1 \leqslant i \leqslant N-1} c_{i,l}(f) \, \epsilon_{x_i} \right\rangle. \end{split}$$

Mit dem reproduzierenden Kern K_i von $H_{A_i}(I)$ erhalten wir gemäß Satz 2 und Davis [4] für alle $y \in \overline{I}$:

$$S_{l}(y) = \overline{\left\langle K_{l}(., y), \sum_{1 \leq i \leq N-1} c_{i,l}(f) \epsilon_{x_{i}} \right\rangle} \\ = \overline{\left\langle \overline{K_{l}(y, .)}, \sum_{1 \leq i \leq N-1} c_{i,l}(f) \epsilon_{x_{i}} \right\rangle} \\ = \sum_{1 \leq i \leq N-1} \overline{c_{i,l}(f)} K_{l}(y, x_{i}).$$

Für Operatoren erster bzw. zweiter Ordnung mit konstanten Koeffizienten lassen sich die $c_{i,i}(f)$ explizit in der Form

$$c_{i,t}(f) = \alpha f(x_{i-1}) + \beta f(x_i) + \alpha f(x_{i+1})$$

bzw.

$$c_{i,i}(f) = \alpha f(x_{i-1}) + \beta f(x_i) + \alpha f(x_{i+1}) + \gamma \sum_{1 \le i \le N-1} A_{i,i}^{-1} f(x_i)$$

bestimmen. Dabei bezeichnet N die Anzahl der Knoten einer äquidistanten Zerlegung von I. Die Größen α , β und γ hängen von den Operatorenkoeffizienten und für $L \neq D^k$ (k = 1, 2) auch von der Schrittweite h der Zerlegung ab. A_{ij}^{-1} sind die Elemente der gemäß der Adjungiertenformel mit Hilfe von Differenzengleichungsmethoden berechenbaren Inversen der tridiagonalen Matrix des zugehörigen linearen Systems der Stetigkeitsgleichungen (vgl. Ahlberg-Nilson-Walsh [1] für den Fall $L = D^2$). Dieses Verfahren (vgl. [13]) erweist sich jedoch für Operatoren zweiter Ordnung nur für Schrittweiten $h \ge \frac{1}{20}$ als numerisch sinnvoll, benötigt dann allerdings lediglich einen Rechenaufwand in der Größenordnung von N^2 Operationen. Auf ein weiteres Verfahren, das zum Teil fest implementierbar ist, nur 2N - 1Additionen und Multiplikationen erfordert und sich darüberhinaus als numerisch stabil erweist, werden wir in einer weiteren Arbeit eingehen.

3. BERECHNUNG VON L-SPLINES

In diesem Abschnitt leiten wir eine Möglichkeit zur Berechnung von L-Splines her, die nur die Kenntnis des reproduzierenden Kerns des zugehörigen Energieraums erfordert.

Zunächst erhalten wir aufgrund der Interpolationsbedignung (2.13) aus den Sätzen 2 und 4 unmittelbar die definierende Minimaleigenschaft der L-Splines in

KOROLLAR 5. Für $f \in H_{A_i}(I)$ (t = n, l) ist S_t das eindeutig bestimmte Element in der Klasse aller $v \in H_{A_i}(I)$ mit $v(x_i) = f(x_i)$ $(1 \le i \le N-1)$, welches das Funktional $v \rightsquigarrow (Lv \mid Lv)_0$ minimiert.

Dieses Korollar und Satz 3 liefern dann mit Hilfe eines bekannten Ergebnisses aus der Theorie der Hilberträume mit reproduzierendem Kern (Meschkowski [15]) für S_t die Darstellung (vgl. auch Karlin [12], sowie [5–7, 10]):

$$S_{t}(x) = \sum_{1 \leq i \leq N-1} a_{i} K_{t}(x, x_{i}) \qquad (x \in \bar{I}; t = n, l)$$
(3.1)

mit

$$\sum_{1 \leq i \leq N-1} K_i(x_j, x_i) a_i = f(x_j) \qquad (1 \leq j \leq N-1; t = n, l).$$
(3.2)

Dabei bezeichnet K_t den reproduzierenden Kern des Energieraums H_{A_t} . Die Koeffizienten $c_{i,l}(f)$ lassen sich also in der Form

$$c_{i,t}(f) = \overline{a_i} \qquad (1 \le i \le N-1; t = n, l) \tag{3.3}$$

berechnen.

Wir bemerken, daß die Matrix des Systems (3.2) positiv-definit ist und sich somit das Verfahren von Cholesky anwenden läßt. Bislang haben wir ausschließlich interpolierende L-Splines zu Funktionen $f \in H_{A_t}(I)$ (t = n, l) untersucht. Es bleibt zu zeigen, daß die homogene Betrachtungsweise keine Einschränkung bedeutet.

Bezeichnen wir mit P_t (t = n, l) das (verallgemeinerte) Hermite-Birkhoff-Polynom als eindeutig bestimmte Lösung des Randwertproblems

$$L^{*}LP_{t} = 0 (t = n, l),$$

$$D^{j}P_{t}(x_{r}) = D^{j}f(x_{r}) (0 \le j \le t - 1; r = 0, N; t = n, l), (3.4)$$

$$D^{j}LP_{l}(x_{r}) = 0 (0 \le j \le n - l - 1; r = 0, N)$$

für $f \in W_2^n(I)$, so gehört die Funktion

$$w = f - P_t \tag{3.5}$$

zum Raum $H_{A_t}(I)$ (t = n, l).

Setzen wir

$$S_{t,t} = S_{t,w} + P_t(t = n, l)$$
 (3.6)

mit dem w interpolierenden L-Spline $S_{t,w}$, so gilt

$$S_{l,f}(x_i) = f(x_i) \qquad (0 \le i \le N; t = n, l), D^j S_{l,f}(x_r) = D^j f(x_r) \qquad (0 \le j \le t - 1; r = 0, N; t = n, l), (3.7) D^j L S_{l,f}(x_r) = 0 \qquad (0 \le j \le n - l - 1; r = 0, N).$$

Wir erhalten dann den

SATZ 6. Für $f \in W_2^n(I)$ und t = n, l sei

$$w = f - P_t$$

und

$$V_t = \{ v \in W_2^n(I) \ \ v - f \in H_{A_t} \}.$$

Dann ist

$$S_{t,t} = S_{t,w} + P_t$$

das eindeutig bestimmte Element in der Klasse aller $v \in W_2^n(I)$ mit

$$v(x_i) = f(x_i)$$
 (0 $\leq i \leq N$),
 $D^j v(x_r) = D^j f(x_r)$ (0 $\leq j \leq t - 1; r = 0, N$),

welches das Funktional

$$v \rightsquigarrow (Lv \mid Lv)_0$$

minimiert.

Ferner ist $S_{t,t}$ die eindeutig bestimmte schwache Lösung des verallgemeinerten Randwertproblems

$$A_{t}v = \sum_{1 \leq i \leq N-1} c_{i,t}(w) \epsilon_{x_{i}}$$

+
$$\sum_{n-t \leq i \leq n-1} \left(\sum_{n-t \leq r \leq i} (-D)^{r} (a_{n-i+r}(x) \cdot \overline{LS_{t,f}(x)}) \right) (-\partial)^{n-i-1} \epsilon_{x} \Big|_{0}^{1}$$

 $(v \in V_t)$, d.h. es gilt

$$(Lv \mid LS_{t,f})_{0} = \sum_{1 \leq i \leq N-1} c_{i,t}(w) v(x_{i}) + \sum_{n-t \leq i \leq n-1} D^{n-j-1}f(x) \cdot \sum_{n-t \leq r \leq j} (-D)^{r} (a_{n-j+r}(x) \overline{LS_{t,f}(x)}) \Big|_{0}^{1}$$

für alle $v \in V_t$.

Beweis. Mit $v = (v - S_{t,f}) + S_{t,f}$ folgt

$$(Lv \mid Lv)_0 = (L(v - S_{t,f}) \mid L(v - S_{t,f}))_0 + (LS_{t,f} \mid LS_{t,f})_0 + 2 \operatorname{Re}(L(v - S_{t,f}) \mid LS_{t,f})_0.$$

Nach Definition von $S_{t,f}$ gilt

$$(L(v - S_{t,f}) \mid LS_{t,f})_0 = (L(v - S_{t,f}) \mid LS_{t,w})_0 + (L(v - S_{t,f}) \mid LP_t)_0.$$

Die Greensche Formel liefert

$$(L(v - S_{t,f})| LS_{t,w})_0$$

$$= \sum_{1 \le i \le N} \int_{I_i} (v - S_{t,f})(x) \overline{L^* LS_{t,w}(x)} dx$$

$$+ \sum_{0 \le i \le n-1} D^{n-i-1}(v - S_{t,f})(x) \cdot \sum_{0 \le i \le i} (-1)^j D^j(a_{n-i+j}(x) \overline{LS_{t,w}(x)}) \Big|_0^1$$

und

$$\begin{aligned} (L(v - S_{t,f}) | LP_t)_0 \\ &= \int_I (v - S_{t,f})(x) \, \overline{L^* LP_t(x)} \, dx \\ &+ \sum_{0 \leqslant i \leqslant n-1} D^{n-i-1}(v - S_{t,f})(x) \cdot \sum_{0 \leqslant i \leqslant i} (-1)^j \, D^j(a_{n-i+j}(x) \, \overline{LP_t(x)}) \Big|_0^1. \end{aligned}$$

Der Integralterm verschwindet wegen (2.12) bzw. (3.4) und der diskrete Teil aufgrund der Bedingung (3.7) für den Typ I bzw. (3.4), (3.7) und (2.15) für den Typ II. Es folgt die Orthogonaltitätsrelation

$$(L(v-S_{t,f}) \mid LS_{t,f})_0 = 0$$

und somit die behauptete Minimaleigenschaft für $S_{t,f}$. Für alle $v \in W_2^n(I)$ mit $v - f \in H_{A_i}(I)$ (t = n, l) erhalten wir

$$(Lv \mid LS_{t,f})_0 = (Lv \mid LS_{t,w})_0 + (Lv \mid LP_t)_0.$$

Wie im Beweis zu Satz 4 ergibt sich

$$(Lv \mid LS_{t,w})_{0} = \sum_{1 \leq i \leq N-1} c_{i,t}(w) v(x_{i}) + \sum_{n-t \leq j \leq n-1} D^{n-j-1}v(x) \cdot \sum_{n-t \leq r \leq j} (-1)^{r} D^{r}(a_{n-j+r}(x) \overline{LS_{t,w}(x)}) \Big|_{0}^{1}$$

und

$$(Lv \mid LP_t)_0 = \sum_{n-t \leqslant j \leqslant n-1} D^{n-j-1}v(x) \cdot \sum_{n-t \leqslant r \leqslant j} (-1)^r D^r(a_{n-j+r}(x) \overline{LP_t(x)}) \Big|_0^1.$$

Wegen $(v - f) \in H_{A_t}(I)$ und $S_{t,f} = S_{t,w} + P_t$ folgt mit der Linearität von L die Behauptung.

Für Polynom-Splines n-ten Grades vom Typ I, also den Fall

 $L = D^n$, $Dom(L) = W_2^n(I)$,

lassen sich das Polynom P_n und der reproduzierende Kern K_n des Energieraums

$$H_{A_n} = (W_2^n(I); (D^n(\cdot)|D^n(\cdot))_0)$$

zum Operator

$$A_n = (-1)^n D^{2n}, \quad \text{Dom}(A_n) = W_2^{2n}(I) \cap \mathring{W}_2^n(I)$$

explizit angeben.

Nach Phillips [17] erhalten wir für $f \in W_2^n(I)$ als Lösung des Zwei-Punkte-Hermite Randwertproblems

$$(-1)^n D^{2n} P_n = 0$$

 $D^j P_n(0) = D^j f(0)$
 $D^j P_n(1) = D^j f(1) \qquad (0 \le j \le n-1),$

das Polynom

$$P_n(x) = \sum_{0 \le j \le n-1} \left(D^j f(0) \, q_{j,n}(x) + D^j f(1) (-1)^j \, q_{j,n}(1-x) \right)$$

mit

$$q_{j,n}(z) = \frac{z^{j}}{j!} (1-z)^{n} \cdot \sum_{0 \leq k \leq n-j-1} {\binom{n+k-1}{k} z^{k}}.$$

Berücksichtigt man, daß

$$G_n(x, y) = (-1)^n (x - y)_+^{2n-1} / (2n - 1)!$$

die Green-Funktion des Anfangswertproblems

$$(-1)^n D^{2n}u = v$$
 $(u \in W_2^{2n}(I); v \in L_2(I)),$
 $D^ju(0) = 0$ $(0 \le j \le 2n - 1)$

ist, so ergibt sich mit Hilfe von P_n und G_n einer Idee von Gordon [11] folgend für den reproduzierenden Kern von H_{A_n} die Funktion

$$K_n(x, y) = (-1)^n \left(\frac{(x-y)_+^{2n-1}}{(2n-1)!} - \sum_{0 \leq j \leq n-1} \frac{(-1)^j (1-y)^{2n-j-1}}{(2n-j-1)!} q_{j,n}(1-x) \right).$$

4. NUMERISCHE BEISPIELE, ANWENDUNGEN AUF DIE STATISCHE BIEGUNG VON BALKEN

Das in (3.1) und (3.2) bzw. Satz 6 beschriebene Verfahren zur Berechnung von L-Splines soll an einigen numerischen Beispielen illustriert werden.

Zu den Funktionen

$$f_1(x) = 4x(1-x)\sin(\pi x)$$

aus $\mathring{W}_2^2(I)$ bzw.

$$f_2(x) = \sin(\pi x)$$

aus $W_{2}^{2}(I) \cap \mathring{W}_{2}^{1}(I)$ bzw.

$$f_3(x) = \exp x$$

aus $W_2^2(I)$ wurden jeweils die in Frage kommenden L-Splines S_{t,f_k} (t = n, l; n = 1, 2; k = 1, 2, 3) zu den Knoten

 $x_i = i/10$ ($0 \le i \le 10$)

berechnet. Dazu wurde der diskrete Fehler

$$e_{t,k} = \max\left\{ \left| f_k\left(\frac{j}{30}\right) - S_{t,f_k}\left(\frac{j}{30}\right) \right| \left| \begin{array}{c} 0 \leqslant j \leqslant 30 \right\rangle \right.$$

sowie die zugehörende Rechenzeit Z in Sekunden ermittelt.

218

BEISPIEL 1. Operator:

$$L = a \cdot D^{1}\left(a(x) = \left(\frac{1}{x+1}\right)^{1/2}\right), \qquad L^{*}L = -D^{1}(a^{2}D^{1}).$$

Reproduzierender Kern von $(\mathring{W}_2^1(I); (L(\cdot) L(\cdot))_0)$:

$$\begin{split} K(x,y) &= \frac{1}{6}x(2+x)(3-y\cdot(2+y)) & (0 \le x \le y \le 1), \\ &= \frac{1}{6}y(2+y)(3-x\cdot(2+x)) & (0 \le y \le x \le 1). \end{split}$$

Hermite-Birkhoff-Polynom:

$$P(x) = -\frac{1}{3}(x-1)(x+3)f_{3}(0) + \frac{1}{3}x(x+2)f_{3}(1)$$

$$\frac{k}{1} \frac{e_{1,k}}{2,42 \cdot 10^{-2}} \frac{Z}{0,38}$$

$$3 \frac{1}{1,42 \cdot 10^{-3}} \frac{0,38}{0,40}$$

BEISPIEL 2. Operator:

$$L = D^{1} + aD^{0} \left(a = -\frac{1}{x+1} \right), \quad L^{*}L = -D^{2}.$$

Reproduzierender Kern von $(\mathring{W}_2^1(I); (L(\cdot) \mid L(\cdot))_0)$:

$$K(x, y) = y(1 - x) - (y - x)^{1}_{+}.$$

Hermite-Birkhoff-Polynom:

BEISPIEL 3. Operator:

$$L = aD^2\left(a(x) = \left(\frac{1}{x+1}\right)^{1/2}\right), \qquad L^*L = D^2(a^2D^2).$$

Typ I:

Reproduzierender Kern von $(\mathcal{W}_2^2(I), (L(\cdot) \mid L(\cdot))_0)$:

$$K_{2}(x, y) = \frac{1}{156} x^{2}(y-1)^{2} (2y(x+3)(5y+13) - x(x+2)(9y^{2}+26y+13))$$

(0 \le x \le y \le 1),
$$= \frac{1}{156} y^{2}(x-1)^{2} (2x(y+3)(5x+13) - y(y+2)(9x^{2}+26x+13)))$$

(0 \le y \le x \le 1).

640/22/3-3

Hermite-Birkhoff-Polynom:

$$P_{2}(x) = \frac{1}{13}(x^{2}(x-1)(4x-9)f_{3}'(1) + x(x-1)^{2}(5x+13)f_{3}'(0) - x^{2}(9x^{2}+8x-30)f_{3}(1) + (x-1)^{2}(9x^{2}+26x+13)f_{3}(0))$$

$$\frac{k}{1} \frac{e_{2,k}}{1} \frac{Z}{1} \frac{1.27 \cdot 10^{-4}}{3} \frac{0.41}{2.74 \cdot 10^{-7}} \frac{0.41}{0.41}$$

Typ II:

Reproduzierender Kern von $(W_2^2(I) \cap \hat{W}_2^1(I); (L(\cdot) \mid L(\cdot))_0)$:

$$K_1(x, y) = \frac{1}{12}x(y-1)(y(y^2+y-5)+x^2(x+2)) \qquad (0 \le x \le y \le 1),$$

= $\frac{1}{12}y(x-1)(x(x^2+x-5)+y^2(y+2)) \qquad (0 \le y \le x \le 1).$

Hermite-Birkhoff-Polynom:

$$P_{1}(x) = (1 - x)f_{3}(0) + xf_{3}(1)$$

$$\frac{k}{2} \begin{vmatrix} 4,14 \cdot 10^{-5} \\ 1,29 \cdot 10^{-3} \end{vmatrix} \begin{vmatrix} 0,39 \\ 0,40 \end{vmatrix}$$

Nach Satz 4 und Collatz [3], Stakgold [20] bietet sich folgende Anwendung auf die statische Biegung von Balken an.

Auf einen Balken mit der veränderlichen Biegesteifigkeit 1/(x + 1), der an seinen Enden 0 und 1 fest eingespannt bzw. gelenkig gelagert ist, müssen an den Stellen $x_i = i/10$ $(1 \le i \le 9)$ Einzellasten der Größe $c_{i,2}(f_1)$ bzw. $c_{i,1}(f_2)$ gemäß folgender Tabelle

i	1	2	3	4					
$C_{i,2}(f_1)$	-0,20	23,38	36,47	40,88					
$c_{i,1}(f_2)$	7,97	7,37	7,55	6,90					
				5		6	7	8	9
				37,	01	26,77	12,48	-3,00	-17,61
				5,	91	4,59	3,03	1,49	-0,3

wirken, damit seine statische Biegungslinie durch die Punkte $(x_i, f_1(x_i))$ bzw. $(x_i, f_2(x_1))$ $(0 \le i \le 10)$ geht. Die Auslenkung des Balkens zwischen den Belastungstellen x_i wird durch den gemäß (3.1) und (3.2) berechenbaren *L*-Spline S_{2,f_1} vom Typ I bzw. S_{1,f_2} vom Typ II repräsentiert. BEISPIEL 4. Operator:

$$L = D^2 + aD^1$$
 $(a(x) = -\frac{1}{x+1}), \quad L^*L = D^4.$

Typ I:

Reproduzierender Kern von $(\hat{W}_2(I); (L(\cdot) | L(\cdot))_0)$:

$$K_2(x, y) = -\frac{1}{6}y^2(x-1)^2(2xy+y-3x) + \frac{1}{6}(y-x)^3_+.$$

Hermite-Birkhoff-Polynom:

$$P_{2}(x) = x^{2}(x-1)f_{3}'(1) + x(x-1)^{2}f_{3}'(0) + x^{2}(3-2x)f_{3}(1) + (x-1)^{2}(2x+1)f_{3}(0) \frac{k}{1} \frac{e_{2,k}}{1,24 \cdot 10^{-4}} \frac{Z}{0,47} 3 5,57 \cdot 10^{-7} 0,53$$

Typ II:

Reproduzierender Kern von $(W_2^2(I) \cap \mathring{W}_2^1(I); (L(\cdot) | L(\cdot))_0)$:

$$K_1(x, y) = -\frac{1}{6}y^3 + -y(6y^2 + 7y + 14) x + \frac{1}{54}y(3y^2 - 10y - 20)x^2 + \frac{1}{18}y(y+2) x^3 + \frac{1}{6}(y-x)^3_+.$$

Hermite-Birkhoff-Polynom:

$$P_{1}(x) = \frac{1}{3}x(x+2)f_{3}(1) - \frac{1}{3}(x-1)(x+3)f_{3}(0)$$

$$\frac{k}{2} \begin{vmatrix} e_{1.k} \\ 1.48 \cdot 10^{-3} \\ 3 \end{vmatrix} \begin{vmatrix} 2 \\ 6.67 \cdot 10^{-4} \end{vmatrix} \begin{vmatrix} 0.57 \\ 0.59 \end{vmatrix}$$

In diesem Beispiel müssen an den Stellen $x_i = i/10$ ($1 \le i \le 9$) Einzellasten der Größe $c_{i,2}(f_1)$ bzw. $c_{i,1}(f_2)$ gemäß der Tabelle

i	1	2	3	4				
$c_{i,2}(f_1)$	-22,81	7,64	33,22	50,90				
$c_{i,1}(f_2)$	52,10	-7,42	11,40	8,36				
				5	6	7	8	9
				57,10	50,90	33,22	7,64	-22,81
				9,86	9,69	6,06	12,59	-22,61

wirken, damit die statische Biegungslinie eines Balkens mit der konstanten Biegesteifigkeit 1, der an seinen Enden 0 und 1 fest bzw. drehelastisch eingespannt ist (mit einer Drehelastizität der Größe 1 in 0 und $\frac{1}{2}$ in 1), durch die Punkte $(x_i, f_1(x_i))$ bzw. $(x_i, f_2(x_i))$ ($0 \le i \le 10$) geht. Die Auslenkung eines solchen Balkens zwischen den Belastungsstellen x_i wird wiederum durch den *L*-Spline S_{2,f_1} vom Typ I bzw. S_{1,f_2} vom Typ II repräsentiert.

Zur Berechnung der reproduzierenden Kerne in den Beispielen 1 und 3 verweisen wir auf die Ausführungen bei Collatz [3].

LITERATUR

- 1. J. H. AHLBERG, E. N. NILSON AND J. L. WALSH, "The Theory of Splines and Their Applications," Academic Press, New York/London, 1967.
- P. G. CIARLET AND R. S. VARGA, Discrete variational Green's function II. One dimensional problem, *Numer. Math.* 16 (1970), 115–128.
- 3. L. COLLATZ, "Eigenwertaufgaben mit technischen Anwendungen," 2. Aufl., Akademische Verlagsgesellschaft, Leipzig, 1963.
- 4. P. J. DAVIS, "Interpolation and Approximation," Blaisdell, Waltham, Mass., 1963.
- F. J. DELVOS, Optimale Interpolation mit der Methode von Ritz, Z. Angew. Math. Mech. 55 (1975), T 234-T 235.
- F. J. DELVOS AND W. SCHEMPP, An extension of Sard's method, *in* "Spline Functions. Karlsruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 80–91, Springer-Verlag, Berlin/Heidelberg/New York, 1976.
- F. J. DELVOS AND H. W. KÖSTERS, Zur Konstruktion von M-Splines höheren Grades, Computing 14 (1975), 173–182.
- 8. F. J. DELVOS AND H. W. KÖSTERS, On periodic *M*-splines, *Computing* 16 (1976), 221-229.
- 9. F. J. DELVOS AND W. SCHEMPP, On spline systems: *L_m*-splines, *Math. Z.* **126** (1972), 154–170.
- F. J. DELVOS AND W. SCHEMPP, On optimal periodic spline interpolation, J. Math. Anal. Appl. 52 (1975), 553-560.
- 11. W. J. GORDON, Blending-function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal. 8 (1971), 158-177.
- 12. S. KARLIN, "Total Positivity." Vol. I, Stanford Univ. Press, Stanford, Calif., 1968.
- H. W. KÖSTERS, Zur Charakterisierung und Berechnung von L-Spline-Funktionen. Z. Angew. Math. Mech. 55 (1975), T249–T251.
- 14. M. MEIER, "Anwendungen der Variationsmethode auf Differentialgleichungen der Flächeninterpolation," Diplomarbeit, Ruhr-Universität Bochum, 1973.
- H. MESCHKOWSKI, "Reihenentwicklungen in der mathematischen Physik," Bibliographisches Institut, Mannheim, 1963.
- S. G. MIKHLIN, "The Problem of the Minimum of a Quadratic Functional," Holden-Day, San Francisco/London/Amsterdam, 1965.
- 17. G. M. PHILLIPS, Explicit forms for certain Hermite approximations, *BIT* 13 (1973), 177–180.
- 18. A. SARD, Optimal approximation, J. Functional Analysis 1 (1967), 222-244.
- 19. M. H. SCHULTZ AND R. S. VARGA, L-Splines, Numer. Math. 10 (1967), 345-369.
- 20. I. STAKGOLD, "Boundary --- Value Problems of Mathematical Physics," Vol. I, Macmillan, New York/London, 1967.